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Abstract

Multigrid convergence rates degenerate on problems with stretched grids or

anisotropic operators, unless one uses line or plane relaxation. For three dimen-

sional problems, only plane relaxation suffices, in general. While line and plane

relaxation algorithms are efficient on sequential machines, they are quite awk-

ward and inefficient on parallel machines. This paper presents a new multigrid

algorithm, based on the use of multiple coarse grids, that eliminates the need for

line or plane relaxation in anisotropic problems. We develop this algorithm, and

extend the standard multigrid theory to establish rapid convergence for this class

of algorithms. The new algorithm uses only point relaxation, allowing easy and

efficient parallel implementation, yet achieves robustness and convergence rates

comparable to llne and plane relaxation multigrid algorithms.

The algorithm described here is a variant of Mulder's multigrid algorithm

[5] for hyperbolic problems. The latter uses multiple coarse grids to achieve

robustness, but is unsuitable for elliptic problems, since its V-cycle convergence

rate goes to one as the number of levels increases. The new algorithm combines

the contributions from the multiple coarse grids via a local "switch," based on the

strength of the discrete operator in each coordinate direction. This improvement

allows us to show that the V-cycle convergence rate is uniformly bounded away

from one, on model anisotropic problems. Moreover, the new algorithm can be

combined with the idea of concurrent iteration on all multigrid levels to yield a

highly parallel algorithm for strongly anisotropic problems.

*This research was partially supported by the National Aeronautics and Space Administration under
NASA Contract No. NAS1-18605 while the authors were in residence at ICASE, NASA Langley Research
Center, Hampton, VA 23665.





1 Introduction

As is well known, the convergence rate of multigrid algorithms based on point relaxation

smoothers degenerates on problems exhibiting strong anisotropies. Thus line or plane re-

laxation in each of the coordinate directions is often needed to obtain good multigrid con-

vergence rates. Anisotropic discrete operators arise in problems in which the differential

operator exhibits stronger coupling in some coordinate directions than in others, or when

the discretization is based on highly stretched grids having mesh aspect ratios far from unity.

For such problems, line relaxation typically suffices in two dimensional problems, while for

three dimensional problems plane relaxation is often required. With standard (full coarsen-

ing) multigrid in three dimensions, plane relaxation in each of the coordinate directions is

required in general [6].

Plane relaxation is very expensive, especially for systems of equations. Given this, interest

has focused recently on "semicoarsening" algorithms, in which the plane relaxation is carried

out in only one direction, while the grid is "coarsened" only in the direction orthogonal to

these planes [1]. The required plane solves can then be done recursively, via an analogous

two dimensional algorithm, based on line relaxation in one direction and coarsening in the

orthogonat direction.

While such "semicoarsening" algorithms are fast and effective on sequential architectures,

they have limited and awkward parallelism. The recursive solution of two dimensional prob-

lems, required in the plane relaxation, takes O(log 2 N) parallel operations, so that it takes

O(log 3 N) parallel operations per three dimensional V-cycle, where N is the number of mesh

points. Thus it takes time at least O(log 4 N) to converge to truncation error.

An alternative way of achieving robustness, which avoids line and plane relaxations al-

together, is to use multiple coarse grids formed by semicoarsening in each of the coordinate

directions, as in Mulder's hyperbolic algorithms [5]. In this paper, a modification of Mulder's

method is proposed, which substantially improves the convergence properties of his method,

when applied to elliptic problems. This enables one to design effective V-cycle elliptic solvers

for anisotropic problems, using only point relaxation smoothers. This new class of methods

is shown to be simple, robust, and effective.

One can also construct a highly parallel algorithm for anisotropic problems by combining

the new algorithm with the idea of concurrent iteration on all multigrid levels [2]. This paper

gives numerical experiments suggesting the efficacy of this approach, though we have yet to

explore the use of this algorithm on parallel machines.

2 Algorithm Design

Strong coupling of the operator in a particular direction can easily degrade the performance

of a multigrid method. There are several ways of accelerating convergence in the case of such

anisotropy. Line relaxation and semicoarsening methods can be used to correct, respectively,

the inability of the relaxation method to solve for some high frequencies, and the inability

of the standard coarse grid to represent high frequencies. In the line relaxation method, the

ineffective point relaxation is replaced by line relaxation in the direction of strong coupling.



By removing the residual componentsdue to the strong coupling, the remaining residual
due to weak coupling in the other direction canbe effectively smoothedby the relaxation.
Thus line relaxation together with standard coarseningis sufficient to uniformly reduceall
Fourier components,in two dimensionalproblems. In the secondapproach,insteadof using
line relaxations, the grid is coarsenedonly in the direction of strongest coupling. In this
case,point relaxation together with semicoarseningsufficesto uniformly reduceall Fourier
component-s. ........._--

In addition to line relaxation and semicoarsening,other methodshavebeenproposedthat
more aggressivelysolvefor the difficult frequencies.Hackbusch'sRobust Parallel Multigrid
[3] uses'forced aliasing' to representhigh frequency componentson standard coarsegrids.
The high frequencycomponentsof the residualare aliasedto low frequencies,solvedfor on
a coarsegrid, and then the coarsegrid correction is "de-aliased"back to the high frequency.
Although this method usespoint relaxations and standard coarsening,it requiresthe useof
multiple coarsegrids, eachwith a different discreteoperator, and is thus quite complex.

In this paper-we will look at a natural exten_on of the secondapproach, useof semi-
coarsening.This approachwasoriginally proposedby Mulder [5] for overcomingthe problem
of alignment in fluid flow computations. The simple technique of semicoarseningsimulta-
neously in all coordinate directions, and properly weighting the contributions from eachof
the coarsegrids, yields an efficient, robust, and easily parallelizable multigrid method for
generaltensor product grid.

3 The Algorithm

The multiple semicoarsegrid (MSG) correction scheme(for linear problems) is similar to
the standardmultigrid correction scheme, except that there are now extra grids involved. In

two dimensions every grid is simultaneously coarsened in two directions.

We first suppose, for simplicity, that the domain of the model boundary problem is the

unit square, and that this problem is to be solved on an N x N uniform grid given by

ah=((ih,jh) l i=0,1,...,N-1; j=0,1,...,N-1},

where h = 1/N and N is a power of two. Let the subgrid, ft m'', obtained by successively

semicoarsening Fth, be the grid with N/2 m grid points in the x direction and N/2" grid

points in the y direction.

Notice that the notation does not distinguish between a grid obtained by semicoarsening

first in the y direction and then in the x direction and a grid obtained by semicoarsening first

in the x direction and then in the y direction. As shown in Mulder, in order to construct

reasonable algorithms in three or more dimensions, the problems on equivalent grids must be

combined. Figure 1 shows the interrelations between the various grids for a two dimensional

problem with an 8 x 8 fine grid. With coarse grids combined as in this diagram, one has a

only 16 grids altogether, while without combining the full binary tree of grids would contain

69 grids and have no real numerical advantage.

Now introducing more notation, the discrete equations on grid f_m"_ are written as:

A,_,,_Um, n = F_, ,, (1)



The operators A m'n can be thought of as either discretizations of the differential operator,

L, on the grid flm,,_, or as operators obtained variationally from the fine grid and intergrid

transfer operators.

A k grid (N = 2 k) V-cycle for this method is performed in three parts. In part a the

information is propagated from the fine grids to the coarse grids, in part b the equations are

solved on the coarsest grid, and in part c the information is propagated back from the coarse

grids to the fine grids.

MSG algorithm

a. For l = 0,1,2,...,2k- 1:

For allm>0, n>0suchthatm+n=h

1. If I > 0, combine restricted residuals on flm,,_

2. Relax ul times on the _m'=-grid equations

3. If m < k, transfer (restrict) residual from _m,n to tim+l,,,

4. If n < k, transfer (restrict) residual from _'_"_ to tim,n+1

b. For l = 2k:

1. Combine restricted residuals on _/k,k

2. Solve (1) by any direct or iterative method on _k,k

3. Transfer (interpolate) correction from _k,k to _k-l,k and _k,k-1

c. For l = 2k - 1,2k - 2,..., 1,0:

For allm>0, n>0suchthat m+n=l:

1. If l > 0, combine interpolated corrections on flm,,_

2. Relax u2 times on the fire'S-grid equations

3. If m > 0, transfer (interpolate) correction from flm,,_ to _,_-1,,_

4. If n > 0, transfer (interpolate) correction from f_m,,, to _m,,_-i

Any point relaxation on equation (1) can be used in steps a2 and c2. For steps a3, a4,

c3, and c4 we consider intergrid transfer operators which are one dimensional. For example,

the residual restriction operators could be the usual three point averaging formulas, given

by the stencils:

rn÷l,n

im+l,n=[l 1 1 ]

rn,n+l

m,n+l

m _'¢l.
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Figure 1: Semicoarsening of an 8 × 8 grid
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Similarly, one dimensional linear interpolation in the direction of grid refinement could be

used to bring the corrections from coarse to fine grids.

We now look at the details of step al, in which the residuals on tim,,, must be combined,

and step cl, in which the corrections on fi""_ must be combined. The restricted residuals

are simply averaged. Specifically,

1 (lm,n _m--l,n l'm, n re,n--1

_ k., m_l,n'r -_- .,m,n_l r )

T_r_pn T_rt,n _,rrt-- I ,n

Ilqrt,n T,_r/'L,n-- I
m,n--]

if m > O,n > O,

if n = 0,

if m=0.

(2)

A weighted average of the interpolated corrections is used, so that

{ ,.,r",nr"," ,,re+L,, ,.,","tin, " o,m,,,+_ if m < k, n < k,

_"1 am+l,n 'a' "+ "4"2 am,n+l ''_

um,n = "tm+l,n"*l'm'n.,,-,,+l.,_ if n = k,

I _''_ u _''+_ if m = k.
m,n+l

The MSG algorithm can lead to multigrid convergence rates independent of mesh size,

provided the weights wl and w2 are chosen properly.



4 Convergence Theory

In this section, we give our convergence proof for the MSG method for a constant coefficient

model problem in two dimensions, and derive sufficient conditions or/the weights. These

conditions are then used in the next section to motivate the choice of weights for the variable

coefficient problem.

In order to show that the convergence rate of the MSG method is independent of mesh

size for linear, constant coefficient model problems, we make the following assumptions:

A1. The coarse grid operators are Galerkin, or 'variational'.

A2. The restriction and projection operators are adjoints of each other and are one

dimensional.

A3. The discretized operator is symmetric positive definite.

A4. The linear part of the smoother and the discrete operator commute.

We model both our analysis and our notation after that in [4], although some notational

changes are needed in order to keep track of the muitiple grids on each level. In particular,

it is more convenient here to label grid levels in the reverse order, so that the grid level

increases as the grid becomes coarser, contrary to the standard convention. If the two grid

directions are to be coarsened a maximum of rh times in the first direction and fi times in

the second direction (0 < m _ rh and 0 _ n < fi) then the coarsest level will be given by

[= rh + fi and the coarsest grid will be given by the indices rn, n.

We are looking for the solution of

AO,OuO,O= fo,o

where A °'° is symmetric positive definite. For each coarser grid level, l = 1,..., [, we recur-

sively define each of the operators Am'=, for m + n = l,

{ r'_'n Am-l'nI m-l''_ if m > 0
?TI' tn

rm,= 4m,--lr-,,--1 if m = 0
at _pn_l.t • a- _, ,?1.

Note that if m and n are both positive then there are two ways to construct the coarse

grid operators from the fine grid operator. However, since the intergrid operators are one-

dimensional,

i_,,_ ira,n-1 =_ I'_, " i_-1,,,
re,n-1 m-l,n-1 rn-l,n m-1,,',-1, (3)

and therefore either way gives the same result.

Our notation is as follows. Each of the A "*'n are operators on a finite dimensional space,

H m'_. Since we will only be looking at two grid levels at a time, we simplify the grid indices
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by the shorthand notation:

We also definethe inner products

k -- TY/,n

kl = m+l,n

/:2 = rn,n+l

(Uk, Vk)k = y_UkiVki
i

u k vkl = (A% k,vk)k, lk

for any u k, v k in H k. The second, 'energy', inner product induces a norm on H k, which we

denote by [[. [[k, thus

We also define four subspaces of each space H k as follows. For i = 1,2:

S_ = R( I2, )

T? = {v k C Hkl [vk,wk]k=O for allw kCS_}

Corresponding to these subspaces, we define projection operators, T_ and S k such that

R(T?)= ¢?
k r(T?) =

S? = I-T?.

for/= 1,2.

With the above notation, we are now ready to discuss the V-cycle convergence analysis.

The approximation to the solution of the kth grid equations is updated three times per V-

cycle; once after the ux relaxation sweeps in step A2, once after the coarse grid correction in

step C1 and once after the u2 relaxation sweeps in step c2. We label the initial approximation

k and the approximations after each of the three updates as u_i ) for i 1,2 and 3. Ifas U(0), =

denotes the relaxation operator, then the updates are given by

U_I) _.vl {u k= t ¢0),if)

k _ U_I) ..1_ ,klk _ kl ,klk ,, k2u(2) _1 _kl "(3) + _"2• k2_(3)

u_3) _,2 k k= _ (u(_),f)

where

kj ks
u(3) = MG(u(o), fk,), j = 1,2.

We make two additiona| assumptions in order to simplify the case when two grids on the

same grid level are semicoarsened in opposite directions, yielding coarse grids of the same

dimensions. Recall that the coarse grid problems on these coarse grids are combined to form

a single problem.



A5. The initial approximation is equal to zero on all except the finest leveh

u_0) = 0, for all k = m,n # 0,0

A6. There is no smoothing in the fine-to-coarse part of the V-cycle:

/]1 =0

These assumptions guarantee that the residuals from both grids are identical, as shown in

the following lemma.

Lemmal Form, n with O < m < _, O < n < fi:

fm,n lrn,n crn-l,n Tm,n fro,n-1_--" *rn--l,nJ -- "_m,n--lJ

Proof:

The lemma is proved by a simple induction argument on the grid level l, using the

additional assumptions A5 and A6, together with Equations (2) and (3). |

A standard multigrid V-cycle convergence result can be based on a single assumption,

which combines both the smoothing and the approximation properties of the problem,

namely

Ifvlf 
> 1 + g ( [[TkF%[[_)"

1/a

[[gkv[l_- \ [[Fkvl]_

for all v E H k and for all grid levels k. See [4]. Here F k is the linear part of the smoothing

operator G _. We assume sufficient regularity and take a = 1. Then if we define the multigrid

convergence rate on the kth grid level as

e k = inf{llu k - MGk(vk, fk)llk <_ ellu k - vkllk for all v k E Hk},

the V-cycle convergence theorem for standard multigrid algorithms is

Theorem 1 (Standard) Let k > 2 and suppose we have already bounded e k-1 by --

T_en

1
6 k < --

-

In our case, in which we have multiple coarse grids on each grid level, we can prove a

similar result. In fact, the convergence of the MSG V-cycle algorithm can be as good as the

convergence of a standard V-cycle multigrid in which evety grid is semicoarsened only in the

optimal direction.

r



Theorem 2 (MSG) Suppose that

Ilvll__ Ilrkvll_+ Z,IIT,_FkvlI_, i= 1,2,

for all v E H k and for all grid levels k, and choose the weights, Wkl and w_, so that

/3i
_o_-/31 +/32"

g

then

(4)

(1 1)rnax(zm+l'n,_ rn'n+l) <_ min 1 +/31' l q-/32

=_=

(1 1) iek < min 1q- fll'1q: /32 "

Proof:

First we note that

wl + w2 = 1.

We denote the errors corresponding to the updates by e_i ) for i = 0, 1, 2 and 3, where

(_)

and where u k is the exact solution of the kth grid equations. Using Lemma 1 we see that,

for bothi=l andi=2,

e_l) rk ki k k-J/_,u =T ie0).

By our assumptions we also have

e_l) = e_o). (6)

Combining these results, we can write

k k -k k, w2i_2e_

Then the error before and after the z_: post-relaxation sweeps is

e_a ) = Fke_2).

Since we need to look at only two grid levels at a time, we will temporarily suppress the

notational references to the current grid, k. Thus, we define, for i = 1,2 and j = 0, 1,2,3,

?2 ki -- _2 _ '

ek i ----_ e _ '

e_j) = e0-),

and so on.
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Consider an arbitrary element, v, of H k, and let y = Fv. Then

[_(3),v]k = [_(2),u]

k e2= [(501Tx+502T2)_(o)+50,I21_3)+50:I_(3),y]

k 2

"- 50 1 ([Tle,,),Tly] + [/kkle_3), SLY]) +502 ([T2e(I,,T2Y] "31" [Ik, e(a),S2Y])

By the Cauchy-Schwartz inequality,

I[e(3),V]l --__ 501 (llVle(1)H IITlyH + ClllSle(,)]l ]ISlyl0 +502 (]lV2e(1)]l IIT2yll + _211S2e(1)n ]]S2ylI) ,

since, for i = 1,2,

k iIIZ_,_(_)ll= I1_i_)11-<_,11_o)11-- _,llu'll -- e,llZ2,¢ll= _,llS,_o)ll.

Using the Cauchy-Schwartz inequality one more time gives us

I[e(3), v]l 2 < (501(lIT_e(x)II 2 + IIS,_(1)ll2) + 50_(11T_(,)112+ IIS2_(,)112))

• (501(IITx_ll2+ c, llSlyll2)+ 50_(IIT_Yll2+ _IIS_YlI2))•

Dividing through by the square norms of the initial error and v and using Equations (5) and

(6) this simplifies to

I[_(_),_]12 Ilyll2 (50,(IIT,Yll_÷ _,llS_yll_)+ 50_(IIT_Yll_÷ _211S2ylI2))<
ll_(o)ll_llvll2 - _ Ilyll_

It is convenient to define two variables, tl and t2, such that

t_ IIT_ulI2 t2-IIT_yII_
-ilyll 2 , Ilyll2

and rewrite our inequality as

I[_(_)'_112 < IIF_tI=(50_(t,÷ _,(1 - t,)) ÷ (032(t2÷ e2(1- t2)).
11_(o)11211_112-Ilvll_

(7)

The smoothing and approximation hypotheses given by Equation (4) of the theorem can

then be rewritten in terms of the new variables as,

11_112> l÷_,q,
iiFvll2 -

]lvll2 > 1+ f12t2.
IIFvll2 -



Figure 2: Limits on wl

t

1 2

1.1
'r'/

We can therefore write inequality (7) in terms of tl and t2 with either of these upper bounds
llFvll

on llvll------g-,so we are free to use whichever is smaller. Thus,

l[e(3),v][= <min( 1 1 )llqo)ll211vll= - 1 +/31tl'l +7_2t2' ((¢al(tl +el(1--t,))+(wu(t2+eu(1--t2))). (8)

Taking the maximum over all values of tl and t2 we arrive at the following bound on the

convergence rate,

(m n(
-- O<tl<l 1

O<_tz<l

1 1) )+/31t1' 1 +/32t2 ((°dl(tl "[- el(1 - _1)) -1L(od2(t2 -[- ¢2(1 -- t2))) .

Using the definitions of the weights wl and w2 and the conditions on the ¢i's, it follows that

(1 1)ek<--min l+fll'l+fl2 "

Note that the weights in the hypothesis of the theorem, while convenient, are not the

only choice. All we really needed in the proof was that the weights lie within some bounds,

& then the theorem will be proveddetermined by the /_i's. If we define the ratio, r/ = _2'
provided o01 < r/and 002 > 1 - 7/whenever r/< 1 and Wl >_ 1 - l/r/and w2 < l/r/whenever

7/> 1. For the statement of the theorem, we have chosen wl = r//(r/+ 1). See Figure 2.
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5 Practical choice of the weights

Suppose that, as in Mulder, the corrections from the two coarse grids are averaged. Thus,

the weights are given by

1 1
0,37, n __ -- Irgt,_ m __-- 2' w2 -- 2"

These weights give a two-grid convergence rate of approximately 1/2 in the case of strong

alignment, because the appropriate grid gets only half of the needed information. In this

case, our convergence result does not guarantee good convergence. Thus we should look for

ways, based on our theorem, to improve the convergence of this method.

Recall that only semicoarsening in the direction of strongest coupling can significantly

reduce the frequencies which cannot be reduced by the point relaxation. The weights provide

a way of "switching" to the appropriate coarse grid in the cases of strong alignment in one

of the coordinate directions. For our model problem, au_x + ")'uyy = f, we have some degree

of freedom in the choice of the weights. We could take, for instance,

c_2 .},2

w2 - .72"

Since the appropriate grid gets all of the needed information in the case of strong alignment,

these weights can lead to convergence rates which can be made arbitrarily small by increasing

the number of relaxation sweeps.

In general, wl and w2 will vary over the domain and we will not know the relative strengths

and 7 explicitly. Suppose we know that, locally, all modes which cannot be efficiently

reduced by point relaxation can be well approximated on the same semicoarsened coarse

grid. That is, suppose semicoarsening can be used locally to accelerate the convergence.

In this case, we would like to determine the most efficient direction of semicoarsening and

choose our weights accordingly. One way to do this is to test the operator, at the given grid

point, on two different high frequency Fourier modes, one oscillatory only in the x-direction,

the other oscillatory only in the y-direction. The two modes, call them u and v, which are

most natural look locally like:

1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1

1 -1 1 -1 1 -1 1 1 1 1 1 1

1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1

1 -1 1 -1 1 -1 1 1 1 1 1 1

1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1

1 -1 1 -1 1 -1 1 1 1 1 1 1

U ?.7

Appropriate weights at the grid point (i,j) can be determined by applying the operator,

11



A m'_ to u and v. We define

(Am'"u)(i,j) = )_,,(i,j) and (Am'nv)(i,j) = )q,(i,j).

Then a reasonable choice for the weights is:

_'D,, 77. • •

(,,3)- +
r.,...

w2 tz'J) A_ +A_"

Thus, if there is a direction in which semicoarsening can give an acceptable convergence rate,

this method should find that direction.

6 TheoreticalComplexity- Sequential and Parallel

As shown in Mulder [5], the cost of a sequential MSG V-cycle is proportional to the total

number of points on all grids. In two dimensions, where the fine grid consists of M × N

points, there is a total of (2M - 1)(2N - 1) grid points on all of the grids combined, as can

be easily seen by arranging all of the grids as in Figure 3. Thus, there are approximately four

times as many points on all the grids as there are on the finest grid. A similar arrangement

of all of the grids obtained by semicoarsening a three dimensional L × M × N grid is also

shown in Figure 3 giving a total of (2L - 1)(2M - 1)(2N - 1) grid points on all of the

grids, approximately 8 times the number of points on the finest grid. The cost of the

d dimensional algorithm, will be roughly proportional to 2d times the number of points on

the finest grid. A parallel implementation of the MSG algorithm is relatively straightforward

since the computational work on a given level is local and can be performed simultaneously

at many grids points. For a modest number of processors, most of the computation time is

spent on the fine gr_d levels since, on each fine grid level, l, there are

d- 1 _ (d_T)!2iMN

grid points per level. On coarser levels this is an upper bound on the number of grid points.

Therefore the number of grid points decreases like a polynomial divided by an exponential

as the levels become coarser. For a large number of processors, approximately equal to the

number of grid points on the finest grid level N, an equal amount of parallel computation

time is spent on all grid levels, resulting in a computational cost per V-cycle on the order of

log(N).

On message passing machines, the communication between grid levels can become a

problem as the number of processors is increased. Consider what happens in the extreme

case where we have as many processors available as we have grid points on the finest grid.

If we assign one grid point to each processor, then some processors have more work on the

coarser levels and some processors will have no work, simply because the multiple semicoarse

grids have some grid points in common. Thus, some sort of re-distribution must occur in

order to keep the load balanced. We propose two different schemes, a simple scheme involving

12



Figure 3: Successivesemicoarsening,total number of points

at" ",•

js .
s J •

\
J

transposes, which works only in two dimensions, and a second scheme which offsets the grids

in order to reduce the communication. Both schemes preserve the computational complexity,

but have differing communication requirements. The offsetting scheme is ideal for hypercube

communication networks, since all communication is between nearest neighboring processors.

The transpose scheme is based on the observation that in two dimensions, even if the

grids of the same dimensions are not combined, the total number of points on each level does

not increase. For example, if we start with an 8 × 8 grid on level zero, we get a 4 × 8 and an

8 × 4 grid on level one, still having 64 mesh points. On level two, we get a 2 × 8, two 4 × 4,

and an 8 × 2 grid. By carefully transposing and packing these grids, we can fit all 2t grids

on level I into a 8 × 8 array, as shown in Figure 4. This mapping does keep all calculations

on a particular grid local, but involves packing and shifting between grid levels.

In higher dimensions, this type of packing of the coarse grids does not work. Moreover,
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I
Figure 4: Transpose scheme

this scheme involves intense communication in the packing phase which could make it pro-

hibitively expensive on some machines. _'or hypercube communication networks, there are

alternate schemes which keep all of the grid data local One possibility is to offset the various

coarse grids to redistribute the load. For example, in two dimensions, using N 2 points and

(2N - 1) 2 processors, there is a simple one-to:one mapping from all of the points on all of

the grids to the (2N - 1) 2 processors. For every grid level l (0 < l < k), and for every grid

_m,,_ on level l (m > 0, n > 0, m+n = l), let the (i,j)th grid point on grid fim,,_ be assigned

to the (_,j) processor where

= 2'n+1i + 2 TM - 1

j = 2n+lj + 2" - 1,

where 0 < i < N/2 m and 0 < j < N/2 m. The quantities 2TM - 1 and 2 n - 1 in the above

expressions are the horizontal and vertical offsets for the fim,n grid. Since information is only

transferred to grids differing by One in either m or n, then the relative offsets are always by

a power of 2 in one direction. This scheme works equally well in three or more dimensions
and the extension is obvious.

Finally, we note that the offsetting of the various grids can easily be incorporated into

the interpolation and restriction operations. During a restriction from 9/r_''_ to 9t m+a'n, for

example, an averaging of three values of the residual in the x direction is immediately followed

by a shift of all values to the processor which is 2 TM to the right. Similarly for the coarsening

in the y direction. During the interpolation, this process is reversed. Interpolated values

are shifted to the left. This method automatically maintains the correct offset for all of the

grids and increases the communication by only a constant.

Note that, when relaxations are only performed on one grid level at a time, it is sufficient

to offset the grids in only one of the two coordinate directions, using only N(2N- 1)

processors.

7 Experimental Results

Experimentally, the MSG algorithm converges extremely well for the model problem _ux_ +

_uuu = f, using the weights suggested in Section 5. Asymptotic convergence rates are given

in Table 1. These were obtained using a random initial approximation to the solution,

rescaling after each iteration and observing the limit of the ratio of subsequent errors (12).
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All available coarse grid levels were used, with two red/black SOR relaxation sweeps per

grid level and an exact solve on the coarsest level. The convergence rates are seen to be

uniformly small for all ratios, a/7.

MSG was also used on Poisson's equation on non-uniformly stretched grids. Chebyshev

grids were used in both directions, with convergence comparable to the uniformly stretched

grids. See Table 1. The convergence rates for grids which have Chebyshev stretching in

only one direction are also given and can be seen to be in the same range as for the model

problem.

The last entry in Table 1 is for exponential stretching of the grid in one of the coordinate

directions. The exponential stretching is done so that the ratio of the lengths of the first

and the last cell is 10,000. The convergence rates are slightly worse, but still appear to be

bounded independently of grid size.

8 x 8 16 × 16

Uniform Grid

c_/7 = 1 0.07 0.09

a/7 = 10 0.13 0.15

a/7 = 100 0.16 0.19

e_/7 = 1000 0.16 0.19

Chebyschev Grid 0.14 0.15

Uniform/Chebyshev 0.09 0.13

Exponential Stretching 0.15 0.18

32 x 32

0.10

0.15

0.19

0.21

0.16

0.15

0.19

64 x 64

0.10

0.15

0.19

0.21

0.16

0.16

0.20

Table 1: Asymptotic convergence rates of MSG on various types of grids

On massively parallel architectures, the relaxation sweeps in the MSG algorithm can be

performed concurrently on all grids on all grid levels using the CMG algorithm of Gannon

and Van Rosendale [2]. The combined CMG/MSG algorithm proceeds in two phases. In the

first phase, the relaxation is performed on all grids, on all levels. The second phase is the

intergrid transfer phase, in which residuals and corrections from each grid are transferred to

neighboring coarse and fine grids, respectively. Experimental results indicate that the ro-

bustness properties of the MSG algorithm are retained. In Table 2, the observed convergence

rates are given for the model problem. Note that we again observe that strong alignment

does not seriously degrade the convergence. The convergence rates per concurrent iteration

are mostly in the 0.4-0.6 range.
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8 x 8 16× 16

Uniform Grid
_/-/= 1 0.42 0.52
a/5' = 10 0.46 0.48

a/7 = 100 0.40 0.43

a/_' = 1000 0.41 0.43

Chebyschev Grid 0.37 0.44

Uniform/Chebyshev 0.44 0.53

Exponential Stretching 0.48 0.59

32 x 32

0.59

0.59

0.52

0.51

0.50

0.56

0.63

64 x 64

0.60

0.61

0.57

0.55

0.53

0.57

0.63

Table 2: Observed convergence rates of MSG/CMG on various types of grids
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